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Abstract. The Filled Function Method is an approach to finding global minima of multidimensional
nonconvex functions. The traditional filled functions have features that may affect the computability
when applied to numerical optimization. This paper proposes a new filled function. This function
needs only one parameter and does not include exponential terms. Also, the lower bound of weight
factor a is usually smaller than that of one previous formulation. Therefore, the proposed new
function has better computability than the traditional ones.
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1. Introduction

Studies on global optimization for non-convex nonlinear programming problems
have been significantly accelerated since the two volumes named‘Towards Global
Optimization’, edited by Dixon and Szegö ([3, 4]), were published. The recent
progress in this field was reported by Horst and Tuy [10], Pardalos and Rosen [11],
Törn and Žilinskas [13]. This paper concentrates on one of the approaches, the
Filled Function Method(FFM). Early studies on the FFM can be found in [5, 6 and
9].

The FFM is an approach to find the global minimizer of a multimodal function
f (X) onRn, under the following assumptions:

1. f (X) is continuously differentiable;
2. f (X) has only a finite number of minimizers; and
3. f (X)→+∞ as‖ X ‖→ +∞.

Notice that the third assumption above implies the existence of a closed bounded
domain� ⊂ Rn such that� contains all minimizers off (X) and the value of
f (X)whenX is on the boundary of� is greater than any values off (X)whenX is
inside�. To introduce essentials of the FFM, let us define the following concepts:

DEFINITION 1.1. A basin off (X) at an isolated minimizerX1 is a connected
domainB1 which containsX1 and in which starting from any point the steepest
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descent trajectory off (X) converges toX1, but outside which the steepest descent
trajectory off (X) does not converge toX1.

DEFINITION 1.2. A hill of f (X) at X1 is the basin of−f (X) at its minimizer
X1, if X1 is a maximizer off (X).

DEFINITION 1.3. A local minimizerX2 is said to be higher thanX1 if and only
if f (X2) > f (X1), and, for this case,B2 is said to be a higher basin thanB1. In
this paper,Bh andBl denote all higher and lower basins than current basinB1 of
f (X), respectively.

DEFINITION 1.4. A functionP(X) is called a filled function off (X) atX1 if
(1) X1 is a maximizer ofP(X) and the whole basinB1 becomes a part of a hill of

P(X);
(2) P(X) has no stationary points in anyBhs; and
(3) There is a pointX′ in aBl (if such a basin exists) that minimizesP(X) on the

line throughX andX1.

In this paper, we will allow an infinite maximizer ofP(X).
The FFM consists of two phases, local minimization and filling:

Phase 1: In this phase, a local minimizerX1 of f (X) is found. Any effective
technique, for instance, thevariable metric method, can be employed in phase
one.

Phase 2: In this phase, an argumented function called thefilled function is con-
structed. This function includesf (X) in its formulation and has a maximizer
at X1. Furthermore, it has no stationary points in anyBhs, and does have a
stationary point in aBl. Phase 2 ends when such anXs is found thatXs is in a
Bl. Then, the FFM reenters phase 1, withXs as the starting point, to find a new
local minimizerX2 of f (X) (if such one exists), and so on.

The above process is repeated until the global minimizer is found.
Several filled functions have been proposed in the literature. Three popular ones

are ([5, 6]):

P(X, r, ρ) = exp(− ‖ X −X1 ‖2 /ρ2)/[r + f (X)] (1)

G(X, r, ρ) = − {ρ2 ln[r + f (X)]+ ‖ X − X1 ‖p
}

(2)

Q(X, a) = −[f (X)− f (X1)]exp(a ‖ X −X1 ‖p) (3)

wherep = 1 or 2. r and ρ are adjustable parameters, anda is an adjustable
positive weight factor. BothP andG-functions require two adjustable parameters,
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which need to be appropriately iterated and coordinated each other, hence their
algorithmic realization is fairly complicated. For this reason, it is usually agreed
that theQ-function is better than the other two, since it involves only one ad-
justable parameter. However, theQ-function includes an exponential term whose
argument is the product of the weight factora and the norm. Asa becomes larger
and larger, as required to preserve the filling property, the rapid increasing value
of the exponential term will result in failure of computation even if the size of
the feasible region is moderate. In practice, this kind of ill-conditioning problem
frequently occurs. To make theQ-function work, many additional cares must be
incorporated into the algorithm [8]. It is obvious that the exponential term in theQ-
function has seriously limited its applicability to the practical global optimization
problems, especially those raised from engineering.

In this paper, a new filled function, called theH -function, is proposed. We will
show that theH -function is of superiority over previous ones. In Section 2, the
H -function is defined and its filling property is proved. Then the computability
of theH -function is discussed in Section 3. Next, in Section 4, an algorithm is
presented. The results of numerical experiments for testing functions are reported
in Section 5. Finally, conclusions are included in Section 6.

2. H-Function

TheH -function is defined as:

H(X) = 1/ ln[1+ f (X)− f (X1)] − a ‖ X −X1 ‖2 (4)

wherea is a positive real used as the weight factor. Notice that, upon entering
phase 2 of the FFM,f (X) > f (X1) has held already by the definition ofX1.
Consequently,f (X) > f (X1)− 1 and this ensures the existence ofH(X). During
phase 2, the iteration process always checks the function value of current iteration
point first. If at someXs we obtainf (Xs) < f (X1), thenXs is in a lower basin
thanB1 already. Phase 2 ends right atXs and the FFM reenters phase 1 by starting
fromXs .

The filling properties ofH(X) are exhibited by the following theorems.

THEOREM 2.1. Givend ∈ Rn andf (X) > f (X1), if

dT∇f (X) > 0, dT (X −X1) > 0 (5)

or

dT∇f (X) > 0, dT (X − X1) > 0 (6)

then d is a descent direction ofH(X) at pointX.
Proof. It follows from (4) that

dT∇H(X) = −
{

dT∇f (X)
[ln(1+ f − f1)]2(1+ f − f1)

+ 2adT (X − X1)

}
(7)
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wheref − f1 stands forf (X)− f (X1) (throughout the following). Therefore, the
conditions given guaranteedT∇H(X) < 0. 2
THEOREM 2.2. Givenf (X) > f (X1), and

dT∇f (X) < 0, dT (X − X1) > 0 (8)

if

a >
−dT∇f (X)

2dT (X −X1)[ln(1+ f − f1)]2(1+ f − f1)
= al(X) (9)

thend is a descent direction ofH(X) at pointX.
Proof.Under the given conditions, the value of (7) is negative. 2

THEOREM 2.3. Givenf (X) > f (X1), and

dT∇f (X) < 0, dT (X − X1) > 0 (10)

if

a < al(X) (11)

thend becomes an ascent direction ofH(X) at pointX.
Proof.Under the given conditions, the value of (7) is positive. 2

THEOREM 2.4. It is possible that (11) holds.
Proof. al(X) → +∞ asf (X) > f (X1) and f (X) → f (X1), hence (11)

holds. 2
Now we give some remarks to the theorems presented above. The filling prop-

erty of a filled function is mainly characterized by Theorems 2.1, 2.2 and 2.3.
Theorem 2.1 exhibits that in the ascent region of the current basin (i.e.,B1) or
a higher basin thanB1, d is always a descent direction ofH(X). Theorem 2.2
exhibits that in the descent region of a higher basin thanB1, d is still a descent
direction ofH(X) provided that the weight factora is sufficiently large. In other
words, Theorems 2.1 and 2.2 together exhibit the desired filling property ofH(X).
Furthermore, Theorems 2.3 and 2.4 indicate that, in a lower basin thanB1, d may
become an ascent direction ofH(X) and this possibility does exist. Therefore,
under the assumption thatf (X) is continuously differentiable,H(X) must have a
stationary point alongd.

From its definition, theH -function appears more applicable to computational
assignments, because (1) it does not include exponential terms; (2) it needs only
one parameter. In addition, the lower bound of weight factora is usually smaller
than the case ofQ-function (see Section 3).
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3. Analysis on Weight Factora

It has been described in Section 1 that the weight factora plays a crux role in a
filled function. Theoretically, the value ofa must be sufficiently large to preserve
a desirable filling capability. Computationally, the value ofa should be small to
make the numerical procedures healthy. Therefore, a filled function is a robust one
if the value ofal(X) is small given a particularX. In this section, we compare the
H -function with theQ-function in terms of the lower bound ofa.

Let d ∈ Rn, then it follows from (3) that

dT∇Q(X) = −exp(·)[dT∇f (X)+ 2a(f − f1)d
T (X − X1)] (12)

where exp(·) stands for exp(a ‖ X − X1 ‖2). Consequently, with the same condi-
tions as given in Theorem 2.2, if

a >
−dT∇f (X)

2(f − f1)d
T (X −X1)

= aq(X) (13)

thend is a descent direction ofQ(X) at pointX, because such ana satisfying (13)
ensures thatdT∇Q(X) < 0.

Next, consider the ratio ofaq(X) to al(X):

aq(X)/al(X) = [ln(1+ f − f1)]2(1+ f − f1)/(f − f1) (14)

It will be noted that (14) monotonically increases with argument(f − f1). Con-
sequently, iff − f1 > 1.1, thenal(X) is always less thanaq(X). This implies
that, even with a small weight factora, theH -function preserves the desired filling
property.

4. An Algorithm

We have seen that the weight parametera plays a crucial role in filled functions.
This parameter usually needs to be estimated through trial and error. It is possible,
however, to develop a closed-form formula to updatea if X ∈ R1. In this case, (9)
can be converted to the following form:

a = ξ | f ′(Xs) |
2 | Xs −X1 | (1+ f − f1)[ln(1+ f − f1)]2 (15)

wheref −f1 stands forf (Xs)−f (X1), ξ > 1, and subscripts corresponds to the
termination pointXs of phase 2 in the last cycle.

The filling process works as follows: Initially, we seta = a0 > 0. Suppose that
this value ofa is not large enough so that the termination pointXs is in a higher
basin thanB1. In other words, at the end of phase 1 of the second cycle, a new
local minimizer off (X), X2, is found such thatf (X2) > f (X1). If so, we enter
phase 2 again and use (15) to update the weight factora and still repeat the same
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procedure of minimizingH(X) as that in the first cycle. This time when iteration
arrives to theXs , (15) will maked a descent direction ofH(X).

In the rest of this section, we present an algorithm for unidimensional global
optimization. The nomenclature in this algorithm is listed as follows:

D: the interval in which there is a global minimizer off (X) (Notice thatD
corresponds to domain�mentioned at the beginning of Section 1)

a: the weight factor in the formulation of the filled function
X1: the found local minimizer off (X)
f1: the value of the objective function atX1

X0
1: the initial value ofX1, used for the iteration purpose. It is advisable to select

one of the end points ofD asX0
1

f 0
1 : the value off (X0

1), used for the iteration purpose
X0: the initial point to start phase 1 of the FFM
Xc: the initial point to start phase 2 of the FFM
δ: a small positive real number used to construct the starting point of phase 2

The algorithm is described as follows:

Step 0: SpecifyX0, a, andD.X0
1→ X1. f 0

1 → f1.
Step 1: Enter phase 1 of the FFM. Activate the minimization procedure to minim-

ize the objective functionf (X), starting fromX0. Find a local minimizer
Xmin. If f (Xmin) 6 f1, thenXmin → X1 andf (Xmin) → f1; otherwise,
use (15) to updatea.

Step 2: Enter phase 2 of the FFM.X1+ δ→ Xc.
Step 3: UseX1 anda to construct anH -function. Minimize thisH -function with

Xc as the starting point.
Step 4: Continue the down-hill search. Arrive at pointX.
Step 5: 1. If X reaches the right end point ofD, thenX1 − δ → Xc and go to

Step 3;

2. If X reaches the left end point ofD, then taking the smallest minimum
as the global one. Stop.

3. If f (X) < f (X1), thenX→ X0 and go to Step 1;

4. If X is a minimizer of theH -function, thenX→ X0 and go to Step 1;

5. Go to Step 4.

It should be emphasized that this algorithm does not weaken the deterministic
attributes of the FFM, as in the case ofX ∈ R1 there are only two possible
search directions, i.e., the positive and negative directions of theX-axis. For the
multidimensional case, evenX ∈ R2, schemes based on probabilistic approaches to
choose search directions for the filled function are needed, as Ge and Qin described
in [5].
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5. Numerical Experiments

The significance of a new optimization method depends after all on the effect-
iveness of solving practical problems. Several testing functions have been repor-
ted in the literature of global optimization. These functions are usually used to
evaluate the numerical performance of a new approach. In this section, a set of
well-recognized testing functions is described first, then the results of numerical
experiment are presented.

5.1. TESTING FUNCTIONS

Six-hump camel-back(n = 2) [1]

fC(X) = 4x2
1 − 2.1x4

1 + x6
1/3+ x1x2 − 4x2

2 + 4x4
2 (−36 x1, x2 6 3)

The global minima are (0.08983,−0.7126) and (−0.08983, 0.7126).

Branin (n = 2) [2]

fB(X) = (x2− 1.275x21/π
2+ 5x1/π − 6)2+ 10(1− 0.125/π)cos(x1)

+ 10 (−56 x1 6 10, 06 x2 6 15)

The global minima are (−3.142, 12.275), (3.142, 2.275), and (9.425, 2.425).

Goldstein-Price(G-P) (n= 2) [4]

fG(X) =[1+ (x1+ x2+ 1)2(19− 14x1 + 3x2
1 − 14x2 + 6x1x2+ 3x2

2]
× [30+ (2x1 − 3x2)

2(18− 32x1 + 12x2
1 + 48x2

− 36x1x2 + 27x2
2)] (−36 x1, x2 6 3)

The global minimum is (0,−1).

Rastrigin(n = 2) [12]

fR(X) =x2
1 + x2

2 − cos(18x1)− cos(18x2) (−16 x1, x2 6 1)

This function has about 50 minima.
The global minimum is (0, 0).

Shubert III(n = 2) [6]

fS(X) =
{

5∑
i=1

i cos[(i + 1)x1 + 1]
}{

5∑
i=1

i cos[(i + 1)x2 + 1]
}

+ [(x1 + 1.42513)2 + (x2 + 0.80032)2 (−106 x1, x2 6 10)

This function has 760 minima. The global minimum is (−1.42513,−0.80032).
Because of the large number of local minima and the steep slope around the global
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Figure 1. The Shubert function III.

minimum, the Shubert function III has widely been recognized as an important
testing function. An illustration is given in Figure 1.

Sine-square I(n = 6) [7]

fsq1(X) ={10 sin2(πx1)+ (xn − 1)2

+
n−1∑
i=1

(xi − 1)2[1+ 10 sin2(πxi+1)]}π/n (−106 xi 6 10)

This function has about 60 minima.
The global minimum is (1, 1, 1, 1, 1, 1).

Sine-square II(n = 6) [7]

fsq2(X) ={10 sin2(πy1)+ (yn − 1)2

+
n−1∑
i=1

(yi − 1)2[1+ 10 sin2(πyi+1)]}π/n

yi =1+ (xi − 1)/4 (−106 xi 6 10)

This function has about 30 minima.
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Table 1. Numerical Experiments

H -function Q-function

Kf Kt Kf Kt

Six-hump camel-back 137 281 204 346

Branin 97 252 97 3640

G-P 358 502 280 1059

Rastrigin 275 616 118 3589

Shubert III 395 558 NF

Sine-square I 784 2387 NF

Sine-square II 113 1716 NF

Sine-square III 1350 4164 NF

The global minimum is (1, 1, 1, 1, 1, 1).

Sine-square III(n = 6) [7]

fsq3(X) ={sin2(3πx1)+ (xn − 1)2[1+ sin2(2πxn)]

+
n−1∑
i=1

(xi − 1)2[1+ sin2(3πxi+1)]}/10 (−106 xi 6 10)

This function has about 180 minima.
The global minimum is (1, 1, 1, 1, 1, 1).

5.2. RESULTS OF NUMERICAL TESTING

To evaluate its effectiveness, theH -function has been used to seek the global
minima of the testing functions described in the forgoing section. One of the repres-
entative traditional filled functions, theQ-function, has also been tested. Identical
starting points were selected for both filled functions. The results of numerical
experiments are presented in Table 1, where:

Kf – the total number of evaluations for the objective function and the filled
function when the global minimizer was found

Kt – the total number of evaluations for the objective function and the filled
function when the algorithm terminated

NF – failed to find the global minimizer

The evaluation of an algorithm or a formulation of the filled function may
involve several layers of the concerned numerical procedures. It is believed, how-
ever, that the number of iterations should not be regarded as an appropriate index
[7]. This is because, in the down-hill searching process, the number of iterations
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is dependent on what particular methods are used for the lower layers, such as
unconstrained minimization or linear searching. Typically, there may be several
function evaluations per iteration, and it is these evaluations that consume the
major part of total execution time in practical problems. For this reason, we used
the total number of evaluations of the objective function and the filled function as
an appropriate measure for the performance of different filled functions. In terms
of Kf andKt , the results of numerical experiments presented in Table 1 imply
that theH -function is superior to theQ-function, especially, for the complicated
functions like the Shubert III function, or the high dimensional functions like the
Sine-square functions. Consequently, it is reasonably to expect theH -function to
be well applicable to the usually complicated engineering optimization models.

6. Conclusions

The Filled Function Method is an approach to find the global minimum of mul-
timodal and multidimensional functions. Several filled function were reported in
the literature. These traditional functions, however, may lack desired computability,
due to either the exponential term or multiple parameters in their formulations. In
addition, these functions may require a large weight factor to preserve the filling
property. In numerical applications, all of these characteristics may lead to illness
of computation.

In this paper, a new filled function called theH -function is proposed. This
function requires neither exponential terms nor multiple parameters. Furthermore,
the lower bound of weight factora is usually smaller than that of one previous
formulation. Therefore, theH -function seems more applicable to computational
assignments, and this was partially shown in the reported results of numerical
experiments on typical testing functions.
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